Anisotropy in the Shallow Crust Observed around the San Andreas Fault Before and After the 2004 M 6 . 0 Parkfield Earthquake

نویسندگان

  • Elizabeth S. Cochran
  • Yong-Gang Li
  • John E. Vidale
چکیده

Local seismic arrays were deployed at two locations along the San Andreas fault (SAF) near Parkfield, California, before and after the 2004 M 6.0 Parkfield earthquake. Using local earthquakes we determine the anisotropic field within 1– 2 km of the main trace of the SAF at the two array locations separated by 12 km. The initial array, near the SAFOD site, was deployed for six weeks in October and November 2003, and the second array, located near the town of Parkfield, was deployed for 3 months following the 28 September 2004 M 6.0 Parkfield earthquake. We find the fast shear-wave polarization direction nearly fault-parallel (N40 W) for stations on the main fault trace and within 100 m to the southwest of the SAF at both array locations. These fault-parallel measurements span the 100to 150-m-wide zone of pervasive cracking and damage interpreted from fault-zone-trapped waves associated with the main fault core (Li et al., 2004, 2006). Outside of this zone, the fast orientations are scattered with some preference for orientations near N10 E, roughly parallel to the regional maximum horizontal compressive stress direction (rh). In addition, fast directions are preferentially oriented parallel to a northern branch of the SAF recorded on stations in the 2004 Parkfield deployment. The measured anisotropy is likely due to a combination of stress-aligned microcracks away from the fault and shear fabric within the highly evolved fault core. The majority of our measurements are taken outside of the main fault core, and we estimate the density of microcracks from the measured delay times. Apparent crack densities are approximately 3%, with large scatter. The data suggest weak depth dependence to the measured delay times for source depths between 2 and 7 km. Below 7-km source depth, the delay times do not correlate with depth suggesting higher confining pressure is forcing the microcracks to close. No coseismic variation in the anisotropic parameters is observed, suggesting little to no influence on measured splitting due to the 2004 M 6.0 Parkfield earthquake. However, the premainshock and postmainshock data presented here are from arrays separated by 12 km, limiting our sensitivity to small temporal changes in anisotropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake

[1] We investigate temporal variations in the polarization of surface waves determined using ambient seismic noise cross‐correlations between station pairs at the time of the Mw 6.0 Parkfield earthquake of September 28, 2004. We use data recorded by the High Resolution Seismic Network’s 3‐component seismometers located along the San Andreas Fault. Our results show strong variations in azimuthal...

متن کامل

Change of apparent segmentation of the San Andreas fault around Parkfield from space geodetic observations across multiple periods

[1] Sequences of earthquakes are commonly represented as a succession of periods of interseismic stress accumulation followed by coseismic and postseismic phases of stress release. Because the recurrence time of large earthquakes is often greater than the available span of space geodetic data, it has been challenging to monitor the evolution of interseismic loading in its entire duration. Here ...

متن کامل

Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations.

Seismic velocity changes and nonvolcanic tremor activity in the Parkfield area in California reveal that large earthquakes induce long-term perturbations of crustal properties in the San Andreas fault zone. The 2003 San Simeon and 2004 Parkfield earthquakes both reduced seismic velocities that were measured from correlations of the ambient seismic noise and induced an increased nonvolcanic trem...

متن کامل

Seismic Evidence for Rock Damage and Healing on the San Andreas Fault Associated with the 2004 M 6.0 Parkfield Earthquake

We deployed a dense linear array of 45 seismometers across and along the San Andreas fault near Parkfield a week after the M 6.0 Parkfield earthquake on 28 September 2004 to record fault-zone seismic waves generated by aftershocks and explosions. Seismic stations and explosions were co-sited with our previous experiment conducted in 2002. The data from repeated shots detonated in the fall of 20...

متن کامل

33 Seismic Imaging of the San Andreas Fault in Northern California using Receiver Functions

Scattering of teleseismic body waves is conventionally used to investigate crustal and mantle structure using the so-called “receiver function” technique. This approach makes use of the fact that teleseismic events have nearvertical incidence upon horizontally layered structure, ensuring minimum phase, and assumes that source-time functions can be approximated by energy on the P component of mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006